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FORWORD

This study report was prepared by General Dynamics Space Systems (GDSS)
Division for the National Aeronautics and Space Administration/Marshall Space
Flight Center (NASA/MSFC) in accordance with contract NAS8-36924, Data
Requirement Number DR-4. The results were developed from August 1986 to
January 1988.

This volume describes an integrated technology development plan for the
technologies required to process both GBOTVs and SBOTVs. The plan includes
definition of the tests and experiments to be accomplished on the ground, in a
Space Shuttle Sortie Mission, on an Expendable Launch Vehicle or at the Space
Station as a Technology Development Mission (TDM). The plan reflects and
accommodates current and projected research and technology programs where
appropriate.
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SUMMARY

The Turnaround Operations Analysis for Orbital Transfer Vehicles (OTV) Study
was conducted by General Dynamics Space Systems Division (GDSS), Contract No.
NASA8-36924, under the direction of the National Aeronautics and Space
Administration (NASA)/Marshall Space Flight Center (MSFC).

The basic study was for 12 months with an add-on which brought the total time
to 18 months. The results of the total study are presented in this final
report.

The objectives and accomplishments during this study were to adapt and apply
the newly created database of Shuttle/Centaur ground operations. Previously
defined turnaround operations analyses were to be updated for ground-based
OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified
for both OTV and Space Station accommodations hardware, turnaround operations
costs estimated, and a technology development plan generated to develop the
required capabilities.

The study provided technical and programmatic data for NASA pertinent to OTV
ground and space operations requirements, turnaround operations, task
descriptions, timelines and manpower requirements, OTV modular design and
booster and Space Station interface requirements, OTV Space Station
accommodations design and operations requirements, SBOTV accommodations
development schedule, cost and turnaround operations requirements, and a
technology development plan for ground and space operations and space-based
accommodations facilities and support equipment. Significant conclusions of
the effort were:

a. Shuttle/Centaur Lessons Learned

1. Semi-automated cryo stage can be extended to full automation

2. Identified manual operations: candidates for automation

3. Airborne support equipment (ASE) for ground-based cargo bay OTV will
be complex (dump and dual fault tolerant)

4. Dedicated facility recommended

S. Facility should provide capability to simulate launch vehicle
interfaces and Space Station interfaces

6. Reduce number of moves '

b. Ground Processing Operations for GBOTVs

1. Ground processing of ground-based cargo bay OTVs nearly identical to
Shuttle/Centaur

2. Ground processing of ground-based unmanned cargo vehicle (UCV) OTVs
similar to Atlas/Centaur and Shuttle/Centaur

3. Ground processing of space-based OTV relatively simple
(a) Simple ASE
(b) No orbiter cryo integration
(¢) No payload integration
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Recommend integrated processing facility for GBOTVs: Two shift
operations

Automated ground processing operations where possible

GBOTV initial launch 6 weeks (9200 manhours)

Nominal turnaround GBOTV 5 weeks + mission (7800 manhours)
UCV OTV initial launch 5 weeks (6500 manhours)

UCV OTV nominal turnaround 5 weeks + mission (6200 manhours)

Recommend shared ground processing facility for SBOTV

Ground Processing Operations SBOTV

Ground processing of space-based OTV relatively simple
(a) Simple ASE :

(b) No orbiter cryo integration

(¢) VNo payload integration

Recommend shared ground processihg'facility for SBOTV

SBOTV single shift operations - Initial Launch 11 weeks (10,332
manhours)

Space Processing Operations SBOTV

SBOTV can be based at Space Station and turned around in safe and
cost-effective manner

Use teleoperations for SBOTV turnaround tasks except for aerobrake
thermal protection system: extravehicular activity (EVA)

Nominal turnaround for SBOTV:
(a) 63 manhours in space

(b) 763 manhours on ground
(¢) 7 days + mission

SBOTV turnaround propellant resupply, support equipment maintenance,

and long-term cryogenic facility maintenance = 1273 manhours per year
average at the Space Station (3 men maximum per task)

Design and Interfaces

Need proposed modular design of SBOTV to meet projected turnaround
times

Interfaces between OTV launch vehicle and accommodations have been
identified
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f. Space Station Design, Support, and Interface Requirements

1. SBOTV accommodations/support equipment and interfaces with the Space
Station have been identified

2. Minimum scars required on initial Space Station for SBOTV
accommodations

g. Support Equipment Development Cost and Schedule

1. Development of OTV accommodations technology requires
(a) Analyses, tests, and simulations on the ground
(b) A cryogenic experiment on an expendable launch vehicle (ELV) in
space, and Shuttle sortie missions for maintenance/servicing
experiment
(¢) A maintenance/servicing Technology Development Mission (TDM) and
possibly a cryogenic TDM at the Space Station )

2. $1.4 billion development cost for OTV accommodations/support equipment
for SBOTV initial operating capability (IOC) in 2001

h. Turnaround Operations Costs. Average $34M per year for on-orbit tasks to
turnaround a SBOTV

Technology Development Plan. The following is the priority listing of the
technologies needed to be developed for a SBOTV:

e

Propellant transfer, long-term storage, and reliquefaction
Automated fault detection/isolation and checkout system
Docking and berthing

Maintenance/servicing operations and facilities/support equipment

s W N

Payload mating/interface

j. Propellant Transfer, Long-Term Storage, and Reliquefaction Technology
Development Requirements

1. Analyses.véimulation and ground testing

2. An orbital experiment launched on an ELV with a Hp tank scale factor
between 0.1 and 0.4 '

3. Depending on the scale factor on the ELV experiment which produces
different confidence levels of extrapolation to full scale, these
options are seen to be able to reach operational capability
(a) O0.4-scale ELV (Titan IV) can lead to direct development of

operational system
(b) O.l1-scale ELV (Atlas/Centaur) would require additional full-scale

ground testing, or
(¢) Full scale Hy tank testing at the Space Station
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4. Too early to recommend which approach should be pursued

k. Automated Facility Detection/Isolation and Checkout System. Development
of GBOTV and SBOTV operation technology requires analyses, simulation, and
ground testing of automated fault detection/isolation and checkout system.

1. Maintenance/Servicing Operations and Facilities/Support Equipment.
Development of SBOTV accommodations technology requires analyses,
simulation, ground testing, and Shuttle sortie missions, and a Space
Station TDM for docking and berthing, maintenance/servicing,
operations/support equipment, and payload mating/interface.
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SECTION 1
INTRODUCTION

The Orbital Transfer Vehicle (OTV) Concept Definition and System Analysis
Studies, and earlier Space Station Architecture Studies, have shown that
space-based OTVs (SBOTVs) offer potential economic benefits over ground-based
OTVs (GBOTVs). In addition, the Definition of Technology Development Missions
for Early Space Station -- OTV Servicing Study, completed in 1984 and the
present OTV Concept Definition Studies have generated preliminary operational
scenarios and requirements for SBOTVs.

The General Dynamics Space Systems Division (GDSS) OTV Servicing Study used
our Eastern Test Range (ETR) Atlas/Centaur processing as a data base. This
has provided a sound background for a preliminary projection of activities to
maintain and service an upper stage in space. Recently, the design, launch
processing, and manufacture of the Shuttle/Centaur was essentially completed.
The launch processing was performed up to taking the stage out to the launch
pad before the program was cancelled. The Centaur, redesigned for increased
performance and Shuttle integration requirements, is closer to an OTV than the
vehicle used on Atlas.

Now that the Shuttle/Centaur integrated test planning data and launch
processing has been completed, GDSS has used this information as the data base
for the conduct of this follow-on study. Processing information has been
updated with this new data. In addition, with this new data, it was possible
to provide more detailed information on the most desirable methods for turning
around an SBOTV at the Space Station, the support personnel and equipment
needed, and the operations costs. The Shuttle/Centaur data base -- that of a
cryogenic upper stage launched from the Shuttle -- has provided National
Aeronaut.ics and Space Administration (NASA) a comprehensive, substantiated
turnaroind approach for Space Station/OTV planning.

The Space Transportation Architecture Studies (STAS) currently being performed
for NASA and Department of Defense (DoD) have placed strong emphasis on the
reduction of operations costs through simplification, automation, etc. This
turnaround operations analysis study provides additional information to
support the pursuit of this cause in the upper-stage area.

1.1 OBJECTIVES

The basic objectives of this study are to adapt and apply the newly created
data base of Shuttle/Centaur ground operations planning to update previously
defined turnaround operations analyses for GBOTVs and SBOTVs, identify design
requirements for both OTV and Space Station accommodations hardware, and
estimate turnaround operations costs. Specific objectives which support these
basic objectives are as follows:

a. Define OTV turnaround operations requirements, concepts, and scenarios.

b. Conduct operations functional and task analyses.

08520 1-1
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¢. Assess the impact of OTV turnacound operations on ground facilities and
Space Station design and suppcrt requirements.

d. TIdentify OTV design requirements of effective turnaround operations.
e. Analyze turnaround operations zosts and identify operations costs drivers.

Generate Technology Development Plan.

1.2 GROUND RULES AND GUIDELINES

The following ground rules and guidelines were used in the performance of this
study:

a. Make maximum use of prior and current projects.

Space Shuttle will be the Earth launch vehicle: $100M [Eastern Launch
Site (ELS)].

¢. Revision 8 nominal miegion model.

d. Space Statiom Imitial Operational Capability (IOC) 1994.

e. Orbital Maneuvarapie Vehicle (OMV) will be available.

f. Orbiter Cargo Bay (0CB), Aft Cargo Carrier (ACC), and Unmanned Cargo

Vegigie (UCV) Launched
@BOTVs . :

g Reference SBOTV configuration: Defined by Marshall Space Flight Center
(MSFC) for Space Station Phase B.

h. -SBOTV life is 40 missions.

i. Definition of a Task: Any activity or collection of activities serving a
specified purpose relative to turnaround of the OTV.

j. Definition of a Resource: Any quantity required for the performance of a
task: Each resource will be defined to appropriate depth for concept
definition.

k. Functional tasks will be completely defined.
Tasks sequencing information will be provided.

m. Functional/task data base compatible with government computers.

1.3 OTV MISSIONS

The OTV will accomplish a wide range of missions, from Earth orbital to lunar
and planetary, both unmanned and manned. (See Figure 1-1.) Routine transfer
of civilian and military payloads between low Earth and geosynchronous orbit
are planned, including delivery, retrieval, and in-place servicing. The
operational scenario and mission profile of the OTV include: initial delivery
of the OTV with subsequent delivery of payloads and propellants from the Earth
to the OTV/servicing facility by either the Space Transportation System (STS)
of unmanned launched vehicles; integration of payloads on the OTV and
refueling of the OTV from propellant storage tanks on the servicing facility;
departure of the OTV and payloads to high orbits, translunar, or
interplanetary trajectories; then return of the OTV via aerobraking to the
servicing facility.

08520 1-2
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For purposes of this study, NASA has specified :hat the NASA/MSFC Revision 8
nominal mission model be used. Figure 1-2 indi:ates the number of missions to
be performed each year for Revision 8 and when :the major mission drivers first
occur.

1.4 STUDY APPROACH

The overall approach to this study will be a step-wise translation of
Shuttle/Centaur launch processing experience to: 1) an expendable GBOTV, 2) a
reusable GBOTV, and 3) a reusable SBOTV. (See Figure 1-3.) Each step will be
separately defined to allow a clear delineation of the functions and
requirements which are peculiar to each vehicle/basing mode. The major
differences between each step are called out to the right of the blocks. ~

This approach provides more insight for extrapolation from Shuttle/Centaur
launch processing to a reusable SBOTV.

Figure 1-4 presents the study schedule, delineating the tasks to be performed
and the program reviews. The technical work was accomplished in 16 months
with the reporting completed in 18 months.

To accomplish the study objectives, OTV turnaround operations requirements,
concepts, and scenarios were defined; operations functional and task analyses
were conducted; the impact of OTV turnaround operations on Space Station
design and support requirements was assessed; OTV design requirements for
effective turnaround operations were identified; turnaround operations costs
were analyzed; and operations cost drivers were identified. 1In addition, a
technology development plan was generated to develop the capability to process
both GBOTVs and SBOTVs.

1.4.1 TASK 1 - GROUND AND SPACE OPERATIONS REQUIREMENTS. The Shuttle/Centaur
ground processing data base was used to assess and identify requirements for
OTV processing. As we evaluated the data base, we determined which
operational functions were Centaur peculiar and which ones were required for
OTV processing. The data consisted of operations plans which established the
processing and critical paths for Shuttle/Centaur at the ELS. The plan had
about 155 tasks defined and listed about 90 procedures to be accomplished
during Centaur processing, before it was transported to the vertical
processing facility. The operations plans for the vertical processing
facility and Complex 39 were also assessed. This was the type of data that we
used to determine if all processes had been identified in the current OTV
space-based operations. We then updated the OTV data previously defined to
include the requirements identified here.

The Shuttle/Centaur data base also included manpower lcading for each task and
equipment requirements.

08520 1-4
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1.4.2 TASK 2 - FUNCTIONAL ANALYSIS. The requirements identified in Task 1
were integrated with other requirements such as guidelines and ground rules,
Space Station configuration baseline, the SBOTV concept defined by NASA/MSFC
to arrive at probable scenarios for processing. We looked at these
requirements and determined whether they were essential for .maintaining and
operating an OTV. Any potential tall poles were identified, and all
functional requirements were dodumentad The functional analysis includes the
operations necessary to assemuuwe dQSBOTY on-orbit, space-based turnaround
operations, servicing/maintenance. pavioead integration, launch and retrieval
operations. We assessed these tumetrons and incorporated any new requirements
that were essential and appropriate and deleted or modified those that were
not appropriate.

We formulated alternmative scenarios from the functional requirements and
defined operational methods for accomplishing each altermative scenario.
These methods incorporated alternative means to accomplish each task, such as
different types of facilities and automation for ground processing and
different kinds of crew involvement, extravehicular activity (EVA) or
intravehicular activity (IVA), and mechanized alternatives such as
teleoperations, automatic disconnects on the vehicle, robotics, or a
combination for SBOTV. These alternatives and the designated GBOTV concepts
were compared in a trade study analysis to select a recommended approach in
Task 3.

1.4.3 TASK 3 -~ OPERATIONS TRADE STUDIES. 1In this task we compared the
attributes of each alternative operation identified in Task 2 to select a
recommended approach. We defined the selection criteria used to evaluate the
alternative operations. These criteria included design, operational, and cost
factors that have an impact on the selection of a recommended approach. This
task relied on inputs from Tasks 4 and 7 to provide adequate supporting data
for evaluation of the approaches. The alternatives and selection criteria
were then presented in a trade comparison matrix. The recommended operations
approach was selected using the data from this matrix.

1.4.4 TASK 4 - TURNARQUND OPERATIONS ANALYSIS. This task generated the
timeline analyses for both ground and space processing based on the
requirements and alternative operational definitions derived in Tasks 1 and

2. These analyses provided the OTV turnaround operations data necessary to
support the trade studies and to develop to more detail the trade study
recommended operations by defining the ground-based and space-based resources.

We updated the existing OTV timelines to meet new requirements and created new
timelines for new alternative functions. The timelines include OTV turnaround
operations on the ground and in space and the maintenance of any identified
Space Station OTV accommédations, such as orbital support equipment. Our
timelines were created from data that was developed on task analysis
waorksheets. The task analysis worksheets are on computer disc and are used to
document the pertinent detailed tasks, task durations, and resulting

manhours. We also provided data to an appropriate level on task description
sheets. The task description sheet has the task identification code, task
descriptor, purpose, task description, task duration and frequency, and the
resource requirements.

08520 1-8
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1.4.5 TASK 5 — OTV DESIGN AND INTERFACE REQUIREMENTS. Using the results and
recommendations of the turnaround operations analysis and the definition of
the baseline GBOTV and SBOTV, we identified and defined OTV design and
interface requirements for basing on the ground and at the Space Station.
These covered the areas of accessibility, modularity, size, and weight of
Orbital Replacement Units (ORUs); ORU attachment and removal provisions;
controlled storage; self-test to the ORU or subsystem level; handling and
mating provisions; payload mating provisions; accommodations for mechanical,
fluid, and electrical disconnects; zero-g propellant transfer; and management
system, etc.

1.4.6 TASK 6 — SPACE STATION DESIGN, SUPPORT AND INTERFACE REQUIREMENTS.
Using the definition of the space-based support equipment, the operational
maintenance, checkout and launch requirements, the definition of an SBOTV to
meet the operational and interface requirements, and the baseline Space
Station functional and design concept, we performed a design requirements
analysis to determine the accommodation needs from the Space Station to
support the SBOTV. This entailed identifying the operational and physical
Space Station support and interface requirements to.accommodate the retrieval,
maintenance, servicing, checkout, payload mating, and launching of the OTV.
These included the mechanical, fluid and electrical interfaces; cg
considerations; spares storage; pressurized volume; propellant transfer, and
storage system; docking, berthing, and handling equipment; environmental
protection; and crew support requirements.

1.4.7 TASK 7 - TURNARQUND OPERATIONS COST ESTIMATES. A WBS and WBS
dictionary was developed which was used in the performance of the trade
studies. The task's costs of the recommended operational approach considering
the manpower resources required were estimated. The operational costs were
divided into two categories: fixed and variable costs. Fixed costs are
associated with a base cost not dependent on the number (within limits) of
OTVs processed during a period of time (normally 1 year). Operation cost
drivers were also identified. The design development test and evaluation
(DDT&E) and operations costs of the support equipment for the recommended
operational approach were also identified.

1.4.8 TASK 8 - TURNAROUND SCHEDULE. We developed a master program
development schedule for the OTV and the evolution of the Space Station from
IOC to the growth station which can support an SBOTV. From this, we generated
a design and development schedule for the turnaround operations support
hardware. The schedule included the technology development activities
including analysis and ground testing, Shuttle sortie flights and Technology
Development Missions (TDMs) required at the Space Station to develop the
turnaround operations capability.

1.4.9 TASK 9 - TECHNOLOGY DEVELOPMENT PLAN. We generated an integrated
technology development plan for the technologies required for ground and space
processing OTVs. This was a single plan which defined the tests and
experiments to be performed on the ground, on expendable flight experiments,
on Space Shuttle sortie missions, and on the early Space Station. The ground
processing technologies included: 1) fault detection/isolation and system
checkout, 2) visual inspection, 3) leak check and detection, 4) documentation,
and 5) facility checkout and operations provisions.

08520 . 1-9
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The space processing technologies included: 1) propellant transfer, storage,
and reliquefaction, 2) OTV docking and berthing, 3) EVA operations, 4)
0TV/payload mating, 5) maintenance facilities/support equipment, and 6)
automated fault detection/isolation and system checkout. The plan included
task objectives, requirements, mode of accomplishment, schedules, resources,
operations, and expected products. The plan reflected and accommodated
current and projected research and technology programs where appropriate.

1.5 OTV CONFIGURATION

Configurations evaluated for functional differences (See Figure 1-5) include
Atlas/Centaur; Shuttle/Centaur; Shuttle/Centaur derivative expendable OTV;
Boeing Ballute OCB launched reusable GBOTV: Martin ACC launched reusable ~
GBOTV; and SBOTV (MSFC reference configuration). In addition the Martin UCV
OTV (see Figure 1-6) was evaluated. The configurations will be shown in more
detail in the following sections.
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SECTION 2
INTEGRATED TECHNOLOGY DEVELOPMENT PLAN

This section identifies the requirements for analyses, ground tests, Shuttle Sortie or ELV tests, and
Space Station Technology Development Missions (TDM) to be performed on the Space Station to
develop the capability to maintain and service an OTV on orbit. This work is an update of the plan
to generate on the OTV Servicing Study Phase II NAS8-35039 (Report No. GDC-SP-83-067)
done for MSFC.

Figure 2-1 show the overall design and development schedule for the OTV
accommodations/support equipment from Phase A thru several launches to the Space Station and
when the expected IOC will occur. The development schedules for the Space Station, GBOTV and
SBOTYV are also shown to see how the main elements of the program are related and integrated.
The Space Station's first launch is scheduled to occur in 1994, man tended operations will start in
1995, and the Phase I IOC will occur in 1996. The Phase II build-up will be completed in 1999
which allows the SBOTV accommodations to build-up to begin.

The expected development of the GBOTYV is shown from the present Phase A studies to an IOC in
1997 and how this development might augment the SBOTV. In addition, the expected
development of the SBOTYV is shown from the pre-phase A studies which are going on at the
present time to the IOC in 2001. It turns out that this schedule directly parallels the develpment
schedule of the SBOTV accommodations/support hardware. Also on the chart is shown the
technology development schedule for the accommodations/support hardware. This includes
ground, Shuttle/ELV, and Space Station activities. The technology schedule is expanded on the
following charts.

The technology requirements for ground processing of ground based OTV's as well as the ground
processing of space-based OTV's are shown in Figure 2-2. These requirements have been
identified from the OTV Concept Definition Studies and OTV Turnaround Operations Studies that
have taken place in the last five years. '

Figure 2-3 show the development schedule for the ground operations technology. The areas of
technology development are called out on the chart.

Applications analysis will take place starting in 1989 and the selection of applications for testing
would take place in 1991. Testing would continue through 1993 up to the start of the GBOTV
Phase C/D and through 1995 up to the start of the SBOTV and accommodations phase C/D.

The technology requirements for space basing on OTV are shown in Figure 2-4. They have been
identified previously in an MSFC-funded study referenced on the chart. We reevaluated these
requirements in this study and found they haven't changed. An updated technology development
plan for these technologies was developed as part of this study.

Figure 2-5 shows the development schedule for one of the areas of space operations technology,
namely cryogenic fluid transfer, long term storage, and fluid management.

An experiment launched on an ELV has been proposed for an orbital experiment. The launch is
scheduled for early in 1994 and the experiment is designed to have an operating life on orbit of two
years. This data will be available by the CDR for the Phase C/D of the OTV accommodations
program. Depending on the size of the orbital experiment and the expected results especially
pertaining to the confidence level of the scaling factors, three options for the next phase are
envisioned. (1) If the orbital experiment provides enough confidence in the scaling factors, then no
additional technology testing is required and the propellant depot can be developed according to the
schedule on Figure 2-1, (2) If the orbital experiment doesn't provide enough confidence in the
scaling factors, then a large scale gorund test would have to be performed before starting the
propellant depot C/D, or (3) If the orbital experiment doesn't provide the required confidence nor
would the large scale ground test, then a technology development mission (TDM) at the Space
Station would have to be performed before CDR of the accomodations C/D.
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It is too early to recommend the best option but it appears that the third option with a large enough
orbital experiment on the Space Station be flown so that there will be good confidence in the scaling
factors that will be used to extrapolate to the full scale data would be a good approach. The pros
and cons of the three options are discussed in Section 4.0.

Figure 2-6 shows the development schedule for the other area of space operations technology,
namely on-orbit servicing and maintenance which also includes docking/berthing and payload
mating. Servicing and maintenance involves both the SBOTYV and the OTV accommodations
themselves.

The technology development plans include ground testing/simulations, shuttle sorties, and a
technology demonstration mission (TDM) on the Space Station. Proposed Shuttle sortie missions
would evaluate the various elements of servicing and maintenance shown on the chart in zero-g.
These sortie flights would be accomplished before the CDR for the Space Station TDM.

The Space Station TDM would be launched in 1995 and be ready for the flight operations in 1996
at IOC of the station. The data collected would provide verification of the design and approach
during the Phase C/D of the SBOTV and OTV accommodations.

Figure 2-7 lists the type of data which was generated for the plan for the technologies identified on
the previous charts. This data is presented in the following sections.
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SECTION 3.0
AUTOMATED FAULT DETECTION/ISOLATION AND SYSTEM CHECKOUT

The automated fault detection/isolation and system checkout required technology development for
ground processing can be resolved through analyses, simulation and ground testing.

The required technology developments for space processing (same as ones for the ground) can for
the most part be resolvd through analyses, simulation and ground testing.

- No testing required on a Shuttle Sortie or ELV

- May want to include some prototype equipment on maintenance/
servicing/support equipment Space Station TDM

Figure 3-1 describes the proposed technology development plan for analysis and ground testing for

this technology. It includes a detailed schedule for the tasks to be performed and the cost per year
to perform the tasks.
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SECTION 4.0
CRYOGENIC PROPELLANT TRANSFER, STORAGE, AND RELIQUEFACTION

As stated in Section 2.0 we have identified this area as needing development for orbital operations
in our previous studies. In addition, OAST sponsored an On-Orbit Cryogenic Depot Technology
Task Force meeting in Cleveland, Ohio on September 17 and 18, 1987. This was attended by both
NASA and industry personnel. The meeting was called to provide inputs for a "Technology Road
Map" for the orbiting depot system which OAST will generate in the near future.

Figure 4-1 lists the requirements for the proposed technologies to be developed. These aren't all
inclusive for the cryogenic propellant system as those requirements were identified by LeRC at
another time. GD has used this data as a checklist for the technology development plan being
generated on this study. Some areas such as water electrolysis is not being considered for near
future application.

Figure 4-2 summarizes the key technology groups which must be developed to support the OTV

propellant management objectives, and also which of these items require orbital, low-g testing as
well as analysis and ground testing.
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The technology required to support OTV propellant management may be accomplished with three
phases of development (see Figure 4-3). The early stages will consist primarily of analysis and
ground testing of certain technologies. Some of the required components and operations, although
they can be assessed by ground tests, should also be included in an ELV/orbital experiment (along
with many components and operations which require orbital tests). Two such flight experiments
are currently in the planning stages, MSFC's Long-Term Cryogenic Storage Facility System
Study, and LeRC's Cryogenic on-Orbit Liquid Storage, Acquisition and Transfer), which will
address the key propellant management technologies required for the OTV program.

4.1 PROPELLANT TRANSFER TECHNOLOGY ANALYSIS AND GROUND TESTING

A review of the technology development required to support all OTV propellant transfer
design/operational requirements is provided in the Figure 4-4. Transfer lines, disconnect,
compressors, valves, pumps, and their related operations may be assessed largely through analyses
and ground testing. Automation of transfer processes must be demonstrated, for several transfer
scenarios. The technical problems that are to be addressed include propellant leakage, mass
gaging, low-g chilldown, acquisition/transfer, and pumping. The alternatives (which are not
desirable) to the development of this technology are very limited; do not transfer propellants, but
instead replace the user (i.e. OTV) depleted tanks with ELV launched "new" full tanks, produce
LH2 on-orbit by electrolysis/reliquefaction, or liquefy delivered injected gas within a storage tank.
A schedule for the analysis and ground tests to develop transfer technology is also included, and
outlines a three year program to be completed in 1991. _
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42 PROPELLANT STORAGE TECHNOLOGY ANALYSIS AND GROUND TESTING

There are also storage technology development issues which must be addressed in order to support
the OTYV program (see Figure 4-5 for a summary). The listed objectives, justification, and schedule
outline the propellant storage technology analysis and ground testing plan. Evaluation of
thermal/fluid performance and control subsystem reliability will also support related OTV
architecture. The schedule of this development will most likely be driven by NASA's COLD-SAT
and LTCSFSS ground test/flight experiment schedules.

43 PROPELLANT RELIQUEFACTION TECHNOLOGY ANALYSIS AND GROUND
TESTING

In order to provide space-flight qualified refrigeration equipment for use with the OTV architecture,
it is necessary to support the development of one or more refrigerators currently under development
(see Figure 4-6). The magnetically-suspended Stirling refrigerator, which has been under
development at Phillips-Magnavox since 1978, offers the best thermodynamic efficiency of all
mechanical cycles for this temperature range, and a single-stage development unit has acquired over
25,000 hours of wear-free, undegraded performance. The need for refrigeration at a propellant
storage facility will be driven by numerous factors, including vent/no-vent requirements in the
vicinity of the depot, the actual OTV mission model, the cost of propellant delivery to orbit, and the
cost/availability of electrical power at the OTV accommodations.

The USAF is planning to use a single-stage (refrigeration at 65K) refrigerator on the AXAF
mission in the 1990's. The reliquefaction of LH2 would require a two-stage refrigerator, which
has been under development also at Phillips-Magnavox (although the refrigeration stage
temperatures are currently classified).
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44 PROPELLANT TRANSFER, STORAGE AND RELIQUEFACTION ORBITAL TEST
PROGRAM

This orbital test program approach was developed on the LTCSF study for MSFC to reduce the
risk of deploying an orbital cryogenic storage depot (see Figure 4-7). It is based on the depot risk
assessment which was performed on that program. The risk reduction efforts required for the
depot fell into two categories, those which could be addressed in ground tests and those which
required orbital testing. Some of the orbital test issues were being addressed by LDEEF, thus were
not pursued further. An orbital experiment was defined to address the remaining microgravity-
dependent issues. Many of the gravity independent depot features must be included in the orbital
experiment to address the mcirogravity issues. Because of this, the orbital experiment will address
many of the depot issues which could have been addressed in ground tests.

All of the OTV propellant storage, transfer, and reliquefaction orbital testing objectives can be met
with either of two currently planned NASA programs. Figure 4-8 lists the test objectives outlined
for NASA LeRC's COLD-SAT program. The objectives are referred to as the CLASS ONE and
CLASS TWO experiment sets. The CLASS ONE set experiments are considered by LeRC to be of
higher priority than those listed in CLASS TWO, but there is no priority ranking within the classes.
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GD has identified three development paths that would be taken to develop the cryogenic transfer
and storage on orbit. These options are presented on Figure 4-9. Each of these options result in
the design, fabrication, and deployment (to LEO) of a full scale propellant depot.

Option 1 uses a 4/10 scale orbital flight experiment, while Options 2 and 3 include a relatively small
scale (~1/10 scale) orbital flight experiment. Due to the use of the small scale orbital tests, Options
2 and 3 require intermediate steps prior to the design and deployment of the full scale facility.

Option 2 relies on the ground testing of a full scale LH2 storage tank in a thermal vacuum/thermal
balance chamber to provide thermal performane data of the passive and active (reliquefier) thermal
control features. -

Option 3 includes a full scale LH2/LO2 storage facility TDM at the Space Station, prior to the
deployment of a full scale propellant storage depot.

Figure 4-10 is a partial list of the critical scaling parameters required in the analysis and design of a
cryogenic depot for low-g environments.

A detailed scaling analysis is required to provide an orbital experiment design which addresses key
performance parameters. It is difficult, if not impossible to provide a sub-scale test article design
which will yield test results that are directly scalable to a larger scale LH2 or LO2 tank. In the final
analysis, a test article should be designed to provide good scalability of the components which are
deemed critical. This must be done in the near future to keep determine the size of the ELV '
experiment which will yield enough confidence in the scalability of the results.
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Figure 4-11 compares the various Long Term Cryogenic Service Facility (LTCSF) experiments
with the full scale LTCSF and shows the relative size of the various experiments

44.1 OPTION 1

Details of the steps required to complete development Option 1 are outlined on Figure 4-12. The
supply tank which holds the LH2 for the flight experiment during launch is oversized to insure that
sufficient fluid remains for a complete "tanking" of the receiver tank on orbit under low-g
conditions. The experiment mass is such that a Titan IV launch vehicle is required for its'
deployment.

Following the 4/10 scale flight experiment, the design, fabrication, and deployment (to LEO) of the
full scale "first article” propellant storage depot will be conducted.

The large scale experiment has the same components as the small scale LTCSF experiment but is
substantially larger.

The large scale experiment (see Figure 4-13) has a LH2 launch capacity of 8160 Ibs. versus 1440
1bs for the small scale experiment. This will result in more accurate modeling of the full scale
LTCSF. However this also results in a total payload weight of 25,000 1bs for the large scale
experiment versus 9800 1bs. for the small scale experiment, therefore launch costs will also be
significantly more for the large scale experiment. .

The large scale experiment is shown in a 66 ft. long 16.5 ft. dia fairing mounted on a Titan IV. It
is expected that fairings up to 86 ft. long will be available for this vehicle.
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The operational LTCSF has a 100,000 total storage capacity of LH2 and LO2. The LO2 capacity is
approximately 85,700 lbs. and the LH2 capacity is approximately 14,300 Ibs. The dry weight of
this facility is approximately 30,200 1bs. (See Figure 4-14)

Tank shells for the LH2 and LO2 have cylindrical mid-sectins with elliptical end domes, both of
154 inch diameter, and employ 2219-T87 aluminum alloy. Bulkheads used in this concept are
elliptical domes with a ratio of major radius to minor radius of 1.379. Components located internal
to the tank shell include a thermodynamic vent system, mass gauges, the liquid acquisition device
and fluid baffles. Tank shells are structurally supported to the inner debris/micrometeoroid shield
via a system of glass/epoxy composite struts.

Surrounding the primary tank shells is a system of multi-layer insulation blankets and a vapor
cooled shield (VCS).

The LTCSF is surrounded by a dual wall aluminum micrometeoroid/debris shield. The inner shell
also serves as the primary structural shell typing together the LH2 and LO2 tanks.

Also shown is the reliquefaction equipment that takes boiloff exiting the vapor cooled shields and
returns it to the propellant storage tanks as saturated liquid.

4.4.2 OPTION 2

The approach taken in Option 2 (see Figure 4-15) requires that a 1/10 scale, Atlas/Centaur launched
flight experiment be followed by a full scale "Protoflight" LH2 tank thermal performance ground
test. In addition to the passive (MLI, vapor cooled shields, p-o converters) and active (LH2 space
qualified cryogenic refrigeration system) thermal performance tests, limited testing of the Liquid
Acquisition Device (LAD) and Thermodynamic Vent System (TVS) may be performed in the 1-g
environment.

The results of these two tests will provide a good overall basis for the design of the full scale
LTCSF.
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Figure 4-16 shows a breakaway side view of an Atlas/Centaur launched LTCSF flight experiment
as part of Option 2. The major systems highlighted in this view are the payload fairing envelopes,
the RCS hydrazine storage bottles, the dewar assembly, the receiver assembly, the LH2 feed
system, the autogenous pressurization system, the GH2 and GHe pressurization system, the
reliquefaction system, the control systems, and the tank support struts.

The hydrazine storage bottles (5) and a pressurization bottle are placed at the bottom of the
spacecraft due to the vehicle configuration required to fit into the fairing and also to place the
vehicle c.g. close to the spacecraft/vehicle interface. These bottles are sized to maintain orbit for
two years and also provide a reserve to perform additional maneuvers required by the experiment.

The dewar assembly consists of an inner fluid vessel, 2 layers of MLI, a vapor cooled shield, 2
layers of MLI, a vacuum gap and a vacuum shell. The receiver assembly consists of a LH2 tank, 3
MLI blankets, and 2 vapor cooled shields.

The LH2 fluid system includes the fill and drain lines, the tank transfer liens, and the vent line.
The fill and drain line is located at the aft end of the vehicle to allow draining of the LH2 in case the

mission is aborted before launch.

The tank pressurization consists of several systems. The heat exchanger/pump assembly is used to
draw off LH2 from the receiver and convert it to GH2 for receiver pressurization. The GH2 bottles
proven warm vapor pressurization and the GHe bottles are used as backups.

The reliquefaction system includes the reliquefier and two accumulators for gas storage.

A complete configuration definition of the control system has not yet been accomplished, therefore
only a volume allocation is provided on the drawing.

The tank support strut sizes and orientations were chosen based on vehicle geometry, minimization
of heat losses, and to account for tank contracion and expansion during fill and drain operations.
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The protoflight unit consists of a full scale LTCSF LH2 tank and all associated equipment and
structure with the exception of the micrometeoroid/debris shield (see Figure 4-17). The LO2 tank
and supporting equipment and structure are removed and replaced by a panel with a fluid coolant.
LH2 is used in the protoflight unit because the technical challanges of LH2 storage/transfer are
greater than those for LO2.

The thermal vacuumy/balance chamber shown is similar in size to an existing one located at the
Amold Engineering Development Center in Tullahoma, Tenn.

Ground tests with the protoflight article will allow for the prediction of the LTCSF LH2 system
orbital thermal performance.

4.4.3 OPTION 3

The sequence of development steps for Option 3 (see Figure 4-18) uses a 1/10 scale (identical to
Option 2, with the possible exception of minor design differences to insure scalability of the
predetermined critical parameters) flight experiment, and a full scale LH2 tank and reliquefaction
system TDM (STS bay launched) at the Space Station to facilitate the confident design of the full
scale depot.

The final phase is identical to Options 2 and 3, which results in the deployment of the full scale
LTCSF. _

Figure 4-19 shows the size of a full scale LH2 LTCSF tank that could be used as LTCSF TDM at
the Space Station. It is identical to the LTCSF except that the LO2 tank and all associated structure

and equipment are deleted.
This experiment can be launched in the Shuttle, Shuttle derived vehicle, or Titan IV.

LH2 is used in the TDM because the technical challanges of LH2 storage/transfer are greater than
those for LO2.
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4.4.4 COMPARISON OF THE OPTIONS

Figure 4-20 shows the ROM costs of the elements of the OTV propellant development options.
Shuttle launch costs are not shown because theyu would be the same to get all the hardware to the
Space Station. The ELV launch costs are included because they ae different for the different launch

vehicles.

Figure 4-21 shows the total ROM development costs for the three options.
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Figure 4-22 summarizes the advantages and disadvantages of the three development program
Options.

The main advantage of the Option 1 is that the large scale orbital flight experiment will provide
"better" scaling data than the 1/10 scale orbital tests used in Options 2 and 3. This may eliminate
the need for an intermediate test program.

The primary advantage of the second Option is due to the fact that a relatively low cost flight
experiments followed by a large scale ground test which will provide a good understanding of full
scale thermal performance.

Figure 4-23 highlights the important conclusions, and emphasizes the fact that the decision of a
development program will most likely be driven by cost, schedule, and relative technological risks
of each Option. More detailed analyses is required to develop this data to the level required to make
a recommendaton. Therefore, a recommendation can't be made at this time.
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SECTION 5.0
OTV MAINTENANCE/SERVICING OPERATIONS
AND SUPPORT EQUIPMENT TECHNOLOGY

Many OTV maintenance/servicing/operations and support equipment required technology
developments can be resolved through analysis, simulation and ground testing.

o Teleoperations/robotics/tools

o Crewman support/workstation/translation equipment
o OTYV translating and berthing rotation equipment

o Control/displays/communications

Certain technologies require orbital, low-g testing

o EVA maintenance/servicing operations/controls/tools
o Teleoperations/robotics/controls/tools (verification)

5.1 OTV MAINTENANCE/SERVICING OPERATIONS AND SUPPORT EQUIPMENT
TECHNOLOGY ANALYSIS AND GROUND TESTING

OTV Maintenance and Servicing in space are essential elements for successful deployment and
continued operation of a Space-based OTV. This assessment of technology development needs
defines necessary equipment, operational scenario development, and ground testing required to
proof the concepts to support OTV turnaround operations in space. The Shuttle Sortie and Space
Station TDM are covered in the next sections. '

5.1.1 OTV MAINTENANCE AND SERVICING OPERATIONS AND SUPPORT
EQUIPMENT

The question of what maintenance/servicing tasks can be accomplished mroe effectively by EVA or
by a remote control arm (automatic and man-in-the-loop operation) must be investigated. The EVA
operations development has been addressed in Section 5.1.2. Analysis must be performed to
determine the candidate maintenance/servicing tasks for automated operation. Then simulations and
ground tests need to be performed to determine the requirements for the automated equipment and
the OTV equipment being maintained/serviced. GD feels that the recommended automated
equipment approach should be tested on a Shuttle Sortie mission to make sure that the zero-g
aspects are fully understood.

In addition to the remote control arm equipment, other maintenance facilities/equipment must also
be developed such as the engine removal support equipment, the crewmen translation equipment
and the OTV translating and berthing rotation equipment. Analysis and ground tests need to be
conducted in each of these areas to develop the concepts and the critical components that would be
affected by zero-g need to be tested in a Shuttle sortie mission.

Figure 5-1 defines the technology development needs for the support equipment. Figure 5-1a

shows the analysis, simulation and ground testing for the support equipment and EVA operations
combined.
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5.1.2 OTV MAINTENANCE AND SERVICING OPERATONS - EVA

In the previously generated OTV Integrated Technology Development plan we addressed the
development of the new space suit (8 psii) and the extravehicular maneuvering unit (EMU) needed
to perform the OTV turnaround operations on orbit. For this plan we are assuming that this
development will be taken care of by the Space Station Program. However, in order to perform the
OTV maintenance and servicing tasks as a back-up to teleoperations, some technology related to
EVA must be developed. Figure 5-2 is a summary of the ground development test requirements.

Table 5-1 shows the analysis and ground testing related to Heads-Up Display Audio Visual
Logistics System (HAL). Table 5-2 covers EVA Power-Assisted Glvoe End Effector, and Table
5-3 covers the EVA Work Station. Table 5-4 covers the analysis, simulation, and ground testing
for the EVA-OTV Maintenance and Servicing tasks.

Monitor NASA HUD gevelopment program Operate n light 8 dark area 2_ VA
integrate into EMU heimet Data transfer - 3 way EVA

EMU Heads-up display audio-visual Human factors (data assimitation, location) Task complexity analysis

logistics system (HAL) Information channeling On-orbit systems test

Data retrieval complexity Training test (conduct new tasks)
Concept select & prototype manufacturing
EMU integration Glove removai/repiace test {IVA)

EMU Power-assisted glove -G demos/vacuum tests (off gassing) EVA demo - Heat transtfer

end effector (PAGE) NBF & KC135 tests - Task:mockud tests
Productivity analysis
: Concept select & prototype manutacturing Design verification test

EVA Work station NBF tests Productivity test
Muman factors (reach enveiope. etc) Set-up’take-down times
OTV structural interface oesign Human factors compatibility
Define EVA tasks 0O-G EVA demos
Establish EVA task productivity Transiation of modules
Fabricate mockups OTV repairreplace subsystems

EVA OTV tasks Design verification via NBF tests Verity human tactors design
Task procedures/sequencing via NBF tests
Ground-to-space-station job transier

Figure 5-2 EVA Operations Ground and Shuttle Sortie Development Test Requirements

—_— 21034220-1
268.340-14
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"Table 5-1.. Heads-Up Display Audio Visual Logistic System (HAL)

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): Page 1 of 3
___Heads-Up Display Audio Visual Logistic System (HAL)
2. TECHNOLOGY CATEGORY: EVA
3. OBJECTIVE ADVANCEMENT REQUIRED: Consolidate ground tasks
for on-orbit conversion. Provide real-time sophisticated data to EVA
crewmember.,

. CURRENT STATE OF ART: NASA/JISC has initiated a techpology

demonstration program

. DESCRIPTION OF TECHNOLOGY:

Aircraft-style heads-up display system,voice recognition system, and
expanded computer system integrated into the EMU.

RATIONALE AND ANALYSIS.

Real-time data assimilitation and/or transfer for complex OTV EVA tasks
including OTV construction, maintenance, and repair as well as OTV
payload transfer. In addition to streamlining EVA operations and saving
time, the HAL system expands the complexity of EVA tasks and decreases
ground-based EVA to crewmember training.

. TECHNOLOCY OPTIONS:
.Heads-.up' Display:

a. LED
b. LCD
c. VCR

Data transfer:

a. Fiber optics
b. Electrical

. TECHNICAL PROBLEMS:

Integrated a heads-up display system into a pure O environment.




Table 5-1 . Heads-Up Display Audio Visual Logistic System (HAL), Contd

1. TECHNOLOGY REQUIREMENT (TITLE): Page 2 of 3
Heads-Up Display Audio Visual Logistic System (HAL)

9. POTENTIAL ALTERNATIVES: -

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
DARPA heads-up Display program.

11. RELATED TECHNOLOGY REQUIREMENTS:
Development of voice synthesis/voice recognition system.

Advanced displays, data transmission.




- Table 5-2; EVA Power-Assisted Glove End Effector

DEFINITION OF TECHNOLOGY REQUIREMENT

. TECHNOLOGY REQUIREMENT (TITLE): Page 1 of 3

EVA Power Assisted Glove End Effector

. TECHNOLOGY CATEGORY:__ Fya

. OBJECTIVE ADVANCEMENT REQUIRED: Reduce crewman fatigue,

providing expanded work capability.

. CURRENT STATE OF ART:

NASA/JSC CR&D Program initiated 11/83.

. DESCRIPTION OF TECHNOLOGY:

The power tool functions of reciprocating and rotary motion will be
integrated as a streamlined tool into an EMU compatible glove.

RATIONALE AND ANALYSIS:

Repetitive tasks such as bolt/module removal/replace exerts a torque
upon the EVA crewman's wrist and arm, inducing fatigue and limiting
productivity. The use of a power tool will lessen the requirement of
strict EVA task sequencing to reduce iatigue.

TECHNOLOGY OPTIONS:
Brushless dc motor reciprocating/rotary motion to be integrated:

a. Into EMU glove
b. Used as a separate tool

. TECHNICAL PROBLEMS: *

*Operation in pure O EMU environment
*Tool offgassing
*Power requirement

*Quick disconnect

5-10




Table 5-2', gvA Power-Assisted Glove End Effector

1. TECHNOLOGY REQUIREMENT (TITLE):

Page 20f3

EVA Power-Assisted Glove End Effector

9. POTENTIAL ALTERNATIVES: -

11. RELATED TECHNOLOGY REQUIREMENTS:

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT :

5-11




- Table 5-3., EVA Work Station

DEFINITION OF TECHNOLOGY REQUIREMENT

. TECHNOLOGY REQUIREMENT (TITLE): Page 1 of 2

EVA Work Station

. TECHNOLOGY CATEGORY: EVA.
. OBJECTIVE ADVANCEMENT REQUIRED: Provide restraint and work station

for crewman tasks on OTV maintenance

. CURRENT STATE OF ART:

NASA/JSC CR&D Program initiated 11/83.

9.

. DESCRIPTION OF TECHNOLOGY:

The EVA work station will provide required crewman restraint and work
area for module replacement, subsystem repair, and OTV checkout.

The system will be easily adjusted to provide the maximum work envelope
with minimal setup/tear down time.

. RATIONALE AND ANALYSIS:

The effective use of the EVA crewmember and the optimal productivity
of each task is a direct function of the EVA work station and its
maneuverability. The work station will be used as the prime EVA
equipment demonstrator since most EVA sequences will be conducted
from the work station.

TECHNOLOGY OPTIONS:

a. Adhesive bending work station (no scar to workéite)
b. Work platform on RMS-type structure

¢. Integrates into EMU .

. TECHNICAL PROBLEMS:

Six degrees of freedom maneuverable without crewmember disengage.

POTENTIAL ALTERNATIVES: -

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT :

11. RELATED TECHNOLOCY REQUIREMENTS: -
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' Table 5-4 . EVA OTV Maintenance/Servicing Tasks

DEFINITION OF TECHNOLOGY REQUIREMENT

. TECHNOLOGY REQUIREMENT (TITLE): Page 1 of 3

EVA - OTV Maintenance/Servicing Tasks

. TECHNOLOGY CATEGORY: EVA

. OBJECTIVE ADVANCEMENT REQUIRED: Provide EVA operations capability

to maintain/service an OTV at the Space Station using advanced space

suit.

. CURRENT STATE OF ART:___EVA activitv in Shuttle with present

space suit.

. DESCRIPTION OF TECHNOLOGY:

Develop capability to perform: 1) EVA maintenance/servicing tasks for a
space-based OTV such as remove and replace avionic modules, advanced
space engine, propellant tank modules, etc.; 2) inspection tasks for.
total OTV; 3) repair tasks for an aerobrake; and 4) contingency remove
and replace operations for other components that would normally be
maintained with automated means.

. RATIONALE AND ANALYSIS:

Analysis in this study has indicated the type of maintenance/servicing
tasks that would be required to be performed EVA by a crewman for
routine maintenance, tasks that need to be evaluated compared to using
automated equipment, and tasks that would be required for contingency
operations as backup to automated tasks. The capability to perform these
tasks and the evaluation of EVA tasks versus automated tasks needs to be
undertaken.

. TECHNOLOGY OPTIONS:

a. Mobility aids versus free flying with tether

'b. Power-assisted tools including glove end effector

¢. Various module attachment/interface arrangement
Different types of data displays including HAL

e. EVA operations versus automated operations
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Table 5-4:. EVA OTV Maintenance/Servicing Tasks, Contd

1. TECHNOLOGY REQUIREMENT (TITLE): Page 2 of 3
EVA Maintenance Servicing Tasks

8. TECHNICAL PROBLEMS:
o Dexterity
o Operational time in the space suit/fatigue
o Timelines

0 Number of crewmen involved

9. POTENTIAL ALTERNATIVES:

Highly sophisticated automated operations

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: -

11. RELATED TECHNOLOGY RQUIREMENTS:
o Advanced Space Suit
o HAL

o Power-assisted glove end effector
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52 OTV MAINTENANCE AND SERVICING OPERATIONS AND SUPPORT EQUIPMENT

Two shuttle sortie missions are planned in this area. The first will evaluate the maintenance and
servicing operations using teleoperations and the support equipment technology and the second the
EVA operations.

5.2.1 MAINTENANCE FACILITIES/EQUIPMENT SHUTTLE SORTIE MISSION

Initial testing of the maintenance facility and equipment components in space will occur on a Shuttle
sortie mission. This will ensure equipment operation during the applied concept evaluation of the
maintenance technology development mission at the Space Station (TDM). The proposed sortie
mission is presented in Figure 5-AA.

The schedule for the start of the analysis for this task is shown along with the time of the proposed
sortie flight. The funding required from the initiation of the analysis task through ground testing,
and including the sortie mission hardware is shown. The cost of the Shuttle flight is not included.
The derivation of the funding can be found in Section 8.0.

5.2.2 SHUTTLE SORTIE MISSION

The advanced space suit, associated equipment, and planned operational tasks are proposed to be
evaluated during Shuttle sortie tests (Figure 5-3). EVA operations are essential to OTV servicing
operations as a back-up to teleoperations. The EVA system is being refined and developed to
enhance the efficiency of man working in the space environment. The schedule for the start of the
analysis for this task is shown along with the year of the proposed two sortie flights. The funding
required from the initiation of the analysis task through ground testing, and including the sortie
mission hardware is shown. We have only included the funding required for the EVA work station
and operations tasks. The cost of developing the advanced space suit should be charged to the
Space Station. The cost of the flight is not included. Derivation of the funding can be found in
Section ?.
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5.3 OTV MAINTENANCE/SERVICING OPERATIONS AND SUPPORT EQUIPMENT
TECHNOLOGY DEVELOPMENT MISSION

The OTV maintenance/servicing operations and support equipment TDB (see Figure 5-4) consists
of two open truss frames, a motorized carriage, a berthing/support system, a simulated OTV, and
cherry picker type devices for restraining the astronauts. The OTV is attached to the carriage and
berthing system and the entire package (frames, OTV, carriage, berthing system, etc.) is deployed
from the Shuttle and attached to a space station truss. The TDM is supported in the Shuttle with an
open truss to perform maintenance verification tasks, docking and berthing, and payload mating

tasks.
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Figure 5-5 describes the components of the simulated OTV used for the maintenance TDM.

The rpodples shown can be removed from the simulated OTV for the maintenance TDM. The
berthing interface is at the forward of the core module.

The module sizes were selected to be representative of actual sizes for an OTV in order to develop
the capability to handle this type of equipment in space.

Equipment such as avionics packages and ACS modules can be replaced automatically using the
RMS located on a space station truss. A typical changeout is shown in Figure 5-6 for an ACS
module. The changeout starts by attaching the RMS to a fitting on the ACS module and the module
is then disconnected from the OTV. The ACS module is next transported by the RMS to a holding
fixture located on a space station truss and attached to the fixture. The changeout is completed by
reattaching the RMS to the ACS module and reversing the procedures. The same procedures apply
to avionics equipment changeouts. The avionics modules will also be changed out by EVA to
evaluate this capability versus automated.

This chart also shows the cherry picker equipment necessary for EVA crew member translation to
and from the work site. The cherry picker has personnel restraints and is mounted on a rail carriage
system that allows the required mobility and OTV access for maintenance EVA operations.

The carriage also has the ability to rotate the OTV about its axis for easier servicability by an EVA
astronaut or RMS.
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The actual maintenance TDM involves Level I maintenance activities (at the OTV dock). It was not
under the scope of this contract to look at Level II modules removed and brought into a pressurized
area in the station.

The simulated OTV components that were identified for maintenance concept proofing at the Space
Station are listed in Table 5-M. The avionic modules will be removed and replaced by both EVA
and IVA/RMS operations and the ACS modules are replaced via IVA/RMS. All other OTV
maintenance activities will involve EVA operations. One damage repair operation to be
accomplished on the aerobrake while on the vehicle has been injected into the maintenance scenario,
but the other maintenance activities all involve remove and replace action. The IVA remove and
replace operations will be accomplished with crew control of an RMS or the RMS may be
programmed to do the task entirely under computer control. Visual inspection techniques will be
performed and evaluated in conjunction with the other individual maintenance operations.

The proposed ground and Shuttle sortie EMU/EV A operations tests are precursors for a part of the
maintenance TDM. Other areas are also covered by the TDM and these are discussed in the
following sections. The TDM will use some of the ground and sortie test equipment such as EVA
work station and tools.

Table .5-M. Subsystems Selected for Maintenance Tests

Several representative RF and computer
modules for EVA remove and replace and
IVA/RMS remove and replace

o Avionic modules

o Core section - Fuel cell and battery EVA remove and replace

- ACS IVA/RMS remove and replace

o Engine module - EVA remove and replace
o Tank module - EVA remove and replace
o Aerobrake - EVA repair

NOTE: Visual inspection to be a distributed function on all tasks.
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SECTION 6.0
DOCKING AND BERTHING

This section covers the areas of docking and berthing. The requirements for the ground and Shuttle
sortie tests are summarized. The TDM for the initial station is referenced.

6.1 DOCKING AND BERTHING ANALYSIS AND GROUND TESTING

The requirements identified for the docking and berthing development ground tests are presented in
Figure 6-1. We have listed the development tasks and the recommended methods of
accomplishment, along with specific functions to be developed, proofed, and verified.

6.2 DOCKING AND BERTHING SHUTTLE SORTIE MISSION

The requirements identified for the docking and berthing development Shuttle Sortie tests are
presented in Figure 6-1. The figure shows what needs to be accomplished in orbit as opposed to
on the ground.

A docking and berthing system feasibility mission (Figure 6-2) is proposed to be accomplished on
the Shuttle orbiter to ensure design capabilities are adequate to support the intended use. This
approach will provide a proof of concept system for the docking and berthing TDM on the Space
Station. The schedule for the start of the analysis for this task is shown along with the time of the
proposed sortie flight. The funding required from the initiation of the analysis task through ground
testing, and including the sortie mission hardware is shown. The cost of the Shuttle flight is not
included. Derivation of the funding can be found in Section 6.0
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Data systems
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& software
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OMV computer & software.
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Ranging

Laser information processing,
power levels, beam dispersion,
accuracy & repeatability. Establish
closing accuracies & alignment

Fiducial marking location,
size, coior & pattern

Demonstrate performance of
laser ranging in space
environment both automatically
& manually

Verify illumination &
discernment design in

manual mode

Stability & control

Gain & transfer function

for OTV/OMV combination.
Establishment of closure rate,
angle & rotational accuracies

Crbital verification of
control. Minimization of
impact loads

Automatic monitor
& control with
manual override

Displays for timely indication

of closing rates:

e Control rates, distances
& attitudes

* Anticipation displays, warning
& safety functions

Establish useable boundaries
for maneuvering rates
& distances. Minimize EMI/EMP

System performance
& instrumentation

Develop sensors & data
handling for:

* Fuel Flows

* Rates

* Distances

® Accelerations

o Attitudes

* Power system

* Engine performing
* Loads

* Residuals

* Computer functions

Demonstrate instrumentation
system performance in orbit.
Verify interface to TDRSS

Assembly of OTV/
OMV system

Structure fits. Simulated &
functional interface fits.
Software compatibility. Develop
system integration technique

Demonstration in orbit
functionality of system

Attach points

Develop attach points for RMS,
docking & berthing positions

Evaiuate adequacy of shuttle
attach points for launch,
RMS & sortie depioyments

Extraction of OTV
from shuttle using
the RMS

Generate procedures for
manipulating the OTV from
the cargo bay with the RMS

Validate procedures for
deploying OTV from shuttle
during sortie

Detach RMS Procedures for non-load in-orbit evaluation of
from OTV detachment OTV release or hand-off
Securing at Assessment of shock loads, . Assessment of securing &

docked position

clamping functions. reiease
biases, power requirements,
command & control

release of OTV from
docked position in orbit

Securing at
berthed position

Development of coupling
devices, umbilicals, hoid-
down mechanisms & refurbish-
ment procedures

In-orbit demanstration
of berthing requirements

"Figure 6-1
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For costing purposes the following equipment was assumed to be required for
the sortie mission.

ITEM WEIGHT (lb)
Truss frames and Berthing system 190
Simulated OTV frame, berthing latches 300
Avionies and instrumentation | 90
Fixed truss frame - Shuttle support 200
Shuttle RMS . GFE
oMV GFE

Objective:

To provide zero-g verification of the capability of the OMV/simulated OTV with assistance from the
RMS to dock with a docking mechanism during berthing operations on the shuttle

Justification:

Verification of equipment hardware, software & techniques in the form of a sortie test is necessary to
allow system deployment to the space station. This will provide initial evaluation of the system & a
degree of safety for extended proofing operations from the space station

Description:

Perform rendezvous, docking & berthing operations using an OMV, simulated OTV, shuttle RMS &
docking arm. The OTV/OMV will be deployed & berthed with the RMS. The vehicle will dock with an
arm extending from the shuttle. The arm will contain the appropriate targets & docking interface. The

" shuttle will also provide the necessary command control, menitor & instrumentation to alow adequate
in-space evaluation of the system

Figure 6-2 Docking and Berthing Sortie Tests
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6.3 DOCKING AND BERTHING TECHNOLOGY DEVELOPMENT MISSION

The docking and berthing TDM uses the test equipment included in the maintenane/servicing TDM,
mainly the simulaed OTV and the docking carriage.

Depending on the docking capabilities required by the operational OTV, the docking method shown
on Figure 6-3 may be the selected approach. If this is the case, an OMYV is used to bring the OTV
into the station for docking and berthing. The OMYV can be used to position the OTV so that it can
be picked up by the RMS as shown on the chart. The RMS is then used to dock the OTV to the
carriage. Using the carriage, the berthing operation would be performed by moving the simulated
OTV with the carriage to the right and engaging the berthing system and checking the interfaces.

The proposed docking and berthing ground and shuttle tests are precursors to the activities on this
TDM. The TDM will use some of the ground and sortie test equipment such as docking and
berthing latches.
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SECTION 7.0
OTV/PAYLOAD MATING/INTERFACE

This section describes the requirements and recommended ground and Shuttle sortie tests. A
proposed sortie mission is described along with the estimaed costs for the tests. A summary of the
TDM for the initial station is also included.

7.1 OTV/PAYLOAD/MATING INTERFACE DEVELOPMENT TESTS REQUIREMENTS

The requirement to develop a new type interface for the OTV and payload, to enable efficient
mating operations at the Space Station, has been established. Current methods for attaching a
payload to a vehicle commonly involves an adapter with extensive bolting arrangements at both
ends of the interface. The interface is usually severed/separated by means of pyrotechnic devices
installed on the center perimeter of the adapter and the payload is deployed with multiple
spring-loaded actuators. This method offers an adequate payload interface for expendable
missions. It provides for high structural loading at the interface and a simple reliable means for
deployment of the payload, without adding much to the space debris. However, this type of
interface, currently in use, does not accommodate remating of a reusable vehicle with a payload
during turnaround operations in space. The reloading of the spring actuators, alignment, and
attachment of the interfaces would require special support equlpment and labor intensive EVA
operations to accomplish the task.

A standard self-aligning, quick-disconnect OTV/payload interface needs to be developed, one that
would eliminate the need for EVA and special support equipment during payload mating process.

The new interface would accommodate RMS positioning and alignment of the payload on the OTV.

The hold-down system could be implemented by incorporating latch-type mechanisms into the
vehicle that would be controlled through the vehicle command system.

Table 7-1 summarizes the tests required on the ground and on a Shuttle sortie
mission.

7.2 OTV/PAYLOAD MATING/INTERFACE SHUTTLE SORTIE MISSION

Figure 7-1 briefly describes the proposed Shuttle sortie tests identified for proving-out elements of
the new type interface in the space environment. During the tests, the operations and equipment
components will be assessed for adequacy and compatibility. The schedule for the start of the
analysis for this task is shown along with the time of the proposed sortie flight. The funding
required from the initiation of the analysis task, through ground testing, and including the sortie
mission hardware is shown. The cost of the Shuttle flight is not included. Derivation of the
funding can be found in Section 8.0.

For costing purposes, the following equipment was assumed to be required for
the sortie mission:

ITEM WEIGHT (lb)
Simulated OTV and payload with adapter 200

and quick-disconnects

Shuttle RMS : GFE

7-1




. Table 7-1 |

oTV Payload Integration Operations Development Test Matrix

Objective of Test
Program

Rationale for Test
Location

Test the concepts of
payload transfer from
Space Station berthing
to OTV interface

Develop the procedures
required for mating
payloads on an OTV for
attachment ease and
interface verification

Validate the methods of
payload checkout after

mating & before launch
of OTV

Test concepts of servic-
ing payloads attached
to an OTV when
berthed at Space
Station

Test the concept of
payload removal from
OTV due to failure
detection

Ground tests to establish
procedures. Sortie tests
required to confirm pro-
cedures in actual working
environment

Ground tests to establish
procedure and interface
design. Sortie tests
required to verify
attachment interface

Sortie tests not required.
Checkout from Space
Station is the same as on
ground simulator

Ground tests to establish
RU replacement methods.
Sortie tests not required,
covered by EVA opera-
tion, Sortie tests

Ground tests to establish
procedures. Sortie tests
required to confirm pro-
cedures in actual working
environment

Development
OTV Tests
Payload Shuttle
Operations Ground Sortie
Handling x x
Mating X X
Checkout X
R&R payload X
components
Demating X X
Objective:

Zero-g verification of the capability to mechanically mate a payload and OTV which have standard

quick disconnect interfaces

Justification:

Thg interfaces, operational methods and equipment need to be tested in the actual operating
environment to assure adequacy and compatibility under zero-g conditions

Description:

The payload will be translated and positioned on the simulated OTV interface with the shuttle RMS.

The interface will be latched and verified from equipmenit placed in the shuttle cabin. The shuttle will
also provide monitor and instrumentation equipment

Figure 7-1 Payload Mating/Interface - Sortie Tests
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7.3 OTV/PAYLOAD MATING/INTERFACE TDM

The payload integration TDM will use the same equipment as the maintenance/servicing TDM.
This TDM assumes that a simulaed payload would be available at the space station and that no
additional equipment is needed to be launched.

To accomplish payload mating the OTYV is rotated about the berthing system axis. The simulated
payload is then transported from a fixture on the space station to the OTV using the space station
RMS. Once mated to the OTV, checkout of the integration is performed. (SEE (</&UREMT-2Z)

The RMS is detached from the payload and returned to the station where a manned cherry picker
device is attached to it. Two crewmen are then carried to the payload and perform a simulated
remove and replace operation. After the EVA operation on the payload, the crewmen are returned
to the space station. Then the payload is demated from the OTV and returned to the support fixture
on the station.

7-3
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SECTION 8
TECHNOLOGY DEVELOPMENT TESTS COST ANALYSIS

This section delineates the costing analysis performed for the development tests described in the
previous sections.

The following are the ground rules and assumptions used in this analysis:

All cost are ROM for planning purposes only

Costs are in constant FY 1987 M$

No fee, management resume or contingency are included

The Propellant Transfer Storage and Reliquefaction technology estimate are
based on the Large Tank Cryogenic Storage Facility Study (NASS- )
All other technologies are based on very preliminary and brief definition
No government support or STS costs are included

No flight on Sortie operations costs are included

ELYV vehicle costs are included with appropriate technologies

8.1 AUTOMATED FAULT DETECTION/ISOLATION AND SYSTEM CHECKOUT

000

000

The funding required for the ground testing (see Section 3.0) for this technology is shown in Table
8-1.

8.2 CRYOGENIC PROPELLANT TRANSFER, STORAGE, AND RELIQUEFACTION

The funding required for the technology development in this area is shown in Section 4.4. This
covers the ground testing, alternative ELV experiments, full scale (LH2 only) ground testing,
Space Station TDM, and the development of the operational propellant storage tanks on the Space
Station.

8.3 OTV MAINTENANCE/SERVICING/SUPPORT EQUIPMENT

Table 8-2 and 8-3 show the funding requirements for the ground testing and Shuttle Sortie
Missions described in Section 5.1 and 5.2.

Table 8-4 shows the funding requirements for the TDM at the Space Station as described in Section
5.3. It also includes the following for the docking and berthing and OTV/Payload Mating/
Interface testing part of this TDM as described in Section 6.3 and 7.3.




TABLE 8-1. AUTOMATED FAULT DETECTION/ISOLATION AND SYSTEM
CHECKOUT FUNDING REQUIREMENTS '

Cost (87M$) NR -
oPS -

TOTAL $10.0

Fy 88 - .2
Fy 89 - 1.0 SIMULATION
FY 90 - 1.0
FY 91 - 3.0 HARDWARD
FY 92 - 4.0
FY93 - 5 TEST
FY94 - .3
10.0
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TABLE 8-2. MAINTENANCE AND SERUICING GROUND AND SORTIE
MISSION FUNDING REQUIREMENTS

Maintenance Facilities and Equipment

Cost (87MS$) NR 12.7
R 2.5
0PS -
TOTAL 15.2
FY8s- .5 ANALYSIS
FY 89 - 1.0
FY 90 - 6.0 HARDWARE
FY 91 - 5.7
FV 92 - 2.0 SHUTTLE SORTIE
15.2




TABLE 8-3. EUA OPERATIONS GROUND AND SORTIE MISSION
FUNDING REQUIREMENTS

R 2.2
OPS _
TOTAL 10.7
Fv88 - S ANALYSIS
FY 89 - 4.2 HARDWARE
FY 90 - 4.0
FY 91 - 2.0 SHUTTLE SORTIE
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TABLE 8-4. MAINTENANCE/SERDICING/SUPPORT EQUIPMENT
TECHNOLOGY DEUELOPMENT MISSION (TDM)
FUNDING REQUIREMENTS

Cost (87M$)

NR 36.4
R 12.1
oPS _

TOTAL 48.5

FY 91

FY 92

FY 93

FY 94

FY 95

2.0

12.0

15.5

14.0

5.0

48.5




8.4 DOCKING AND BERTHING

The funding required for the ground and sortie mission tests for this technology is shown in Table
8-5.

8.5 OTV/PAYLOAD MATING/INTERFACE
Table 8-6 shows the funding required for the ground and sortie mission tests for this technology.
8.6 INTEGRATED TECHNOLOGY DEVELOPMENT PLAN FUNDING

Table 8-7 summarizes the different funding areas for the Integrated Technology Development Plan.
The three cyrogenic propellant development options are shown in Section 4.4,
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TABLE 8-5. DOCKING & BERTHING GROUND AND SORTIE
MISSION FUNDING REQUIREMENTS

GND SORTIE COMBINED
Cost (87%) NR 2.0 8.4 15.4
R - 2.5 2.5
oPS - -
TOTAL 17.9
FY 88 1.5 ANALYSIS
SIMULRTION
Fy 89 2.0
HARDWARE
FY 90 6.9
FY 91 6.0 SHUTTLE SORTIE
FY 92 2.0
17.9
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TABLE 8-6.

OTU/PAYLOAD MATING/INTERFACE

MISSION FUNDING REQUIREMENTS

GROUND AND SORTIE

‘ ‘ GND SORTIE COMBINED
Cost (87M$) NR 2.3 4.1 6.4
R - .9 .9
oPS - - -
TOTAL 7.3
Fy 88 - .5 ANALYSIS
FY 89 - 2.0 SIMULATION
FY 90 - 2.0 HARDIWARE
FY 91 - 1.8
Y92 - 1.0 SHUTTLE SORTIE

8-8



18/11

WA

A

S8y

L0}

¢Sl

00l

S1S0D SNOILYHAdO HO
HONNVT 3aNTONI LNS30d.

(31L.H0S 2 YY)
oL 81 02 02 § _ ONILYWN Vd ALO -

(31LHOS % HY)
0¢Z 09 69 02 01 ONIHLH3G 8 ONINOOd

(WaL) AININdIND3
: 1HOddNS ® SNOILYHIdO
0S OVl S'SL 02 0%¢ ONIJIAHIS/IONVNILNIVIN -

(31L4OS B YD)
0z 0¥ 2e¥ ¢ SNOILVHIdO VAT -

8-9

(311HOS ® YD) ININDINDI ANV
0z .S 09 Ol ¢ /S3ILMIOVY JONVNIALNIVN

. H34SNVHL
1HVHO 1LSOJ SNOILJO INIWNJOT13AIA LNVT13dOHd 33S INVTI3dOHd JINIDOAHO -

(4o)

1NOMDIAHO WILSAS ANV

NOILYIOSI/NOILO313d
€ g o0y 0€ 0L OF ¢ , 1INV4 GILVYINOLNY

W$
w101

L6 196 1s6 | ¥v6 Te6 126 [ 16 T 06 | 68 | o8 V34V
Ad

«*ONIONNd NV1d LNIWdOTIAIA ADOTONHOIL "L-8 31861

uoIsIng swejsAs eoedsg




Table 8-8 summarizes the total funding requirements for the OTV accommodations at the Space
Station. The total includes the technology development (cryogenic Option #2 shown for reference)
and the development of the operational accommodations. The later data is presented in Vol Il
Section 7.2.
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